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On the deduction of chemical reaction pathways from measurements
of time series of concentrations
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We discuss the deduction of reaction pathways in complex chemical systems from measurements of
time series of chemical concentrations of reacting species. First we review a technique called
correlation metric construction~CMC! and show the construction of a reaction pathway from
measurements on a part of glycolysis. Then we present two new improved methods for the analysis
of time series of concentrations, entropy metric construction~EMC!, and entropy reduction method
~ERM!, and illustrate~EMC! with calculations on a model reaction system. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1336499#
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Complex chemical kinetic systems have many reacting
species and catalysts, and the reaction mechanism de
scribes their chemical connections in a series of elemen
tary reactions. Each step gives the reactants which, in a
single collision, yield the stated products. We discuss the
determination of reaction mechanisms deduced from
measurements of the time series of the concentrations o
the chemical species in the system. We review the metho
of using concentration correlation functions to construct
a correlation metric for this purpose, and present two
improved procedures, which require a larger number of
measurements.

I. INTRODUCTION

A series of studies have been concerned with new
proaches to the deduction of the connectivities of chem
species, the reaction pathway, and the reaction mechanis
complex reaction systems from measurements. These
proaches try to go beyond the art practiced in chemical
netics for at least 100 years, that is of guessing a reac
mechanism and comparing its calculated predictions w
measurements. Stable and radioactive tracers have been
to follow the transfer of a given tracer from one molecule
another, or the transformation of a tagged molecule from
type to another.1 In Refs. 2–9 we presented and tested
approach suitable for oscillatory reactions, which consis
of a categorization of such reactions, the identification
species essential and nonessential for oscillations, and
connectivities of these species, all deduced from several
periments. One class of such experiments is concerned
the determination of Jacobian matrix elements, either fr
time-series analysis10,11 or from quenching studies.12–14 In
another approach, still to be developed much further, we
troduced the technique of genetic algorithms for a system
search for a reaction mechanism assigned a specific task15 In
1081054-1500/2001/11(1)/108/7/$18.00
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this paper we focus on the deduction of reaction pathw
and mechanisms from measurements of time series of ch
cal concentrations.16,17 In Ref. 16 we presented a new tec
nique, called correlation metric construction~CMC! of reac-
tion pathways. A prediction of the reaction pathway
deduced from time-lagged correlation functions of tw
chemical species at a time, obtained from concentration m
surements. These functions are converted into interspe
distances, which are then used in the construction of a m
tidimensional object; a specified two-dimensional project
yields the reaction pathway of the reacting system. This
proach came from earlier theoretical and experimental w
on the implementation of computations by macroscopic,
netic systems;18–24 from the theoretical and experiment
demonstration that complex biochemical reaction netwo
implement logic functions,25,26 and from prior work in elec-
tronic circuit theory, system theory,27,28 and multivariate
statistics.29–31In Ref. 17 we reported an experimental test
the theory on a part of anin vitro glycolysis system contain
ing 8 enzymes and 14 metabolites. We review this work
Sec. II. We then turn in Secs. III and IV to the presentati
of alternative and improved, procedures for the analysis
time series of concentrations, and illustrate one of these w
calculations on a model reaction system.

II. CORRELATION METRIC CONSTRUCTION

Consider a reacting system with two sets of species d
ignated I and S; we suppose that we can perturb each o
I species externally. In the absence of such perturbations
system is in a stationary state. The perturbations of th
species are chosen such that the concentration state spa
all I1S species is adequately sampled. Imposing the ch
of an uncorrelated multivariable Gaussian distribution of
variation of input species concentrations guarantees tha
entire state space of the input species is sampled and
there are no auto or cross correlations among the input
© 2001 American Institute of Physics
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109Chaos, Vol. 11, No. 1, 2001 Deduction of chemical reaction pathways
cies. For each of the I1S species we have a determinis
kinetic equation for the concentrationxj of speciesj, which
may be from within either the I or S set

dxj

dt
5F j~x!, ~2.1!

wherex denotes a vector all theI1S species concentrations
The solutions of Eq.~2.1! are time-dependent determinist
trajectories, which lie on a hypersurface of I1S21 dimen-
sions. If we vary the concentrations of the input species r
domly and thus move the system away from its station
state, then the system will return towards that state alon
deterministic trajectory. Repeated random variations of in
concentrations and measurement of the responses of the1S
species will then sample the hypersurface effectively, and
obtain a time-series measurement of the stochastic distr
tion of inputs and responses. The perturbations are chose
remove the system from its linear regime, and the time
terval between concentration measurements are assum
be less than the slowest relaxation time in the system.

In CMC we form from these measurements time-lagg
correlation functions of a pair of species, one such funct
for each pair,

Si j ~t!5^~xi~ t !2xi !~xj~ t1t!2xj !&, ~2.2!

where the bar onxi denotes the time average of the conce
tration of the time series of speciesi, and the brackets denot
the time average over all measurements. The time intervt
may be positive, negative, or zero, and the time-lagged
relation matrixR(t) is defined with the reduced matrix ele
ments

r i j ~t!5
Si j ~t!

ASii ~t!Sj j ~t!
. ~2.3!

The pair correlations depend on the elementary reaction
the system and their rate coefficients in a complicated w

A simple agglomerative dependency algorithm16 selects
the most important, significant correlations and creates a
gly linked graph in which every chemical species is co
nected to at least one other species.

Next the correlation matrix elements are converted i
distance matrix elements with the definitions

di j 5~cii 22ci j 1cj j !
1/25A2~1.02ci j !

1/2,
~2.4!

ci j 5maxur i j ~t!ut ,

where max specifies the absolute value of the maximum
given correlation regardless of the value oft.

The distance matrix elements are analyzed with a mu
dimensional scaling~MDS! method to construct a multidi
mensional object. The inputs for the MDS method are
measurements of time series of concentrations and the
puts are a map of the connections due to correlations of
species. The object presents measures of relatedness o
series; the more related the more likely that two species
connected by a single reaction. The dimensions of the ob
give an indication of the complexity of the reaction netwo
Downloaded 29 Sep 2003 to 131.243.52.177. Redistribution subject to AI
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A projection of that object onto two dimensions can be c
culated which provides the most information about the m
tidimensional object.

Tests of this theory were made on several model reac
systems; one is shown in Fig. 1, which is an open system
combination of three futile cycles, and functions as a NAN
gate. All enzyme catalyzed reactions are given
Michaelis–Menton mechanisms. Calculations of the
sponses of the S species to random inputs of the I spe
gives the necessary information for the calculations of
pair correlation functions, the correlation distances, the f
mation of the correlation object, and its projection onto
plane. This projection is shown in Fig. 2~A!, which gives a
good representation of the reaction pathway of the mo
shown in Fig. 1. Figure 2~B! is obtained by allowing the
distances between points to be greater, equal to, or less
the actual distances by use of an optimization proced
which minimizes an assumed stress function.

A cluster analysis can also be made which summari
the groupings of chemical subsystems in the reaction sys
and gives a hierarchy of interactions among the subsyste
Several caveats about the CMC method are given in Ref.
particularly in regard to the simple connection algorith
used for choosing the most important correlations regard
of the time lagt.

FIG. 1. A model reaction mechanism: the species varied randomly f
outside are labeled by I, and other species by S. Species marked wi
asterisk are held constant. The enzymeE2 is inhibited noncompetitively
~minus sign in the circle! by I 2, and similarly forE1 andE5. From Ref. 16.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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110 Chaos, Vol. 11, No. 1, 2001 Samoilov, Arkin, and Ross
Other models were investigated in Ref. 16, some w
more variables, and one with two distinct time scales. T
CMC provided the reaction pathways as in the first exam
and further showed a separation of species according to
separation of time scales.

The theory of correlation metric construction was tes
by application toin vitro experiments17 on a part of glycoly-
sis, see Fig. 3. The experiments were carried out in
continuous-flow stirred reactor vessel, with the enzymes
ing confined to the vessel by a membrane. Capillary elec
phoresis was used to analyze quantitatively the outflow fr
the vessel, which was sampled periodically. The species
rate and AMP were selected for random variations of th
concentrations, and consequent perturbation of the glycol
system from its nonequilibrium stationary state. The conc
trations of these two species and six other metabolites w

FIG. 2. Results of calculations of the multidimensional scaling analysis
the model reaction system shown in Fig. 1~A!. Projection onto two dimen-
sions; the distances between points are equal to or less than the calc
distances in the multidimensional object.~B! A projection obtained with an
optimization method, see Ref. 16.

FIG. 3. The first few initial steps of glycolysis; minus~plus signs! indicate
negative~positive! effectors on the respective enzymes. Regulatory inter
tion: ~minus signs! a negative effector;~plus signs! a positive effector.
Creatine-P~phosphate! and C ~creatine kinase! keep the concentrations o
ATP and ADP constant. Pi , inorganic phosphate; HK, hexokinase; G6
glucose-6-phosphate; PHI, phosphohexose isomerase; F6P, fructo
phosphate; F26BPase, fructose-26-biphosphatase; F26BP, fructos
biphosphate; PFK, phosphofructokinase; TPI, triose phosphate isome
GAP, glyceraldehyde phosphate. From Ref. 17.
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measured at given time intervals. From these measurem
two-species time lagged correlation functions were cal
lated. These results give information on the temporal
quence of events, for instance, whether a perturbation of
species follows or proceeds that of another species. Th
results combined with multidimensional scaling analysis
to the two-dimensional projection of the MDS object forme
as shown in Fig. 4~A!. The reaction pathway deduced fro
that projection is shown in Fig. 4~B!. Both of these deduc-
tions from the measurements resemble closely the reac
pathway obtained by traditional methods. The connectivit
of the species, as well as the locations of the positive
negative effectors, are obtained correctly. No postulates
any kind about the reaction mechanism had to be mad
obtain the results in Fig. 4~A!.

The CMC method requires that the random Gauss
inputs elicit responses in the concentrations of the ot
chemical species which are adequately represented by
~2.2!; that expression is the second moment of the pair d
tribution function, and hence the response correlatio
should also be Gaussian. This condition seems to suffice
the example studied and for the interpretation of the exp

f

ted

-

-6-
26-
se;

FIG. 4. ~A! The two-dimensional projection of the multidimensional scali
diagram for the measured time series. The closer two points are the h
the correlation between the respective time series. Black~gray! lines repre-
sent negative~positive! correlations between the respective species.~Ar-
rows! Temporal ordering among species based on the lagged correla
between their time series.~B! The predicted reaction pathway derived fro
the correlation metric construction diagram. Its correspondence to
known mechanism~Fig. 3! is high. See Fig. 3 for abbreviations. From
Ref. 17.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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111Chaos, Vol. 11, No. 1, 2001 Deduction of chemical reaction pathways
ments cited, all of which have nonlinearities in the kineti
However, as we show in the next section, for certain stro
nonlinearities and correlations extending over several s
cies, higher than the second moment of the pair probab
distribution function may contribute and an improvement
CMC is required.

III. ENTROPY METRIC CONSTRUCTION METHOD
„EMC…

A. General

In this new method we determine from the measu
ments of time series of concentrations of species more in
mation than in CMC. From the responses to the stocha
inputs we determine the pair distribution functionp(xi ,xj t)
of chemical concentrations in a method explained belo
The pair correlation function defined in Eq.~2.1! is the sec-
ond moment of the pair distribution function and is obtain
from it by integration

Si j ~t!5E ~xi~t!2xi !~xj~ t1t!2xj !

3p@xi~ t !xj~ t1t!#dxi dxj , ~3.1!

where an ensemble average replaces the average over a
series of experiments on a single system. More meas
ments are needed to determine the pair distribution func
than the pair correlation function.

Further we choose a new measure of the correlation
tance, one based on an information theoreti
formulation.32,33 A natural measure of the correlation di
tance between two variables is the number of states joi
available to them~the size of the support set! compared to
the number of states available to them individually. W
therefore require that the measure of the statistical close
between variablesX andY be the fraction of the number o
states jointly available to them versus the total possible n
ber of states available toX and Y individually. Further, we
demand that the measure of the support sets weighs the s
according to their probabilities. Thus two variables are clo
and the support set is small, if the knowledge of one pred
the most likely state of the other, even if there exists sim
taneously a substantial number of other states.34–36

The information entropy gives the distance we dema
in these requirements. The effective size of the support se
a continuous variable is37

S~X!5eh~X! ~3.2!

in which the entropyh(X) is defined by

h~X!52E
s
p~x!log p~x!dx, ~3.3!

whereS(X) is the support set ofX andp(x) is the probabil-
ity density ofX. Similarly we denote the entropy of a pair o
continuous variablesX,Y, ash(X,Y), which is related to the
pair distribution functionp(x,y) by an equation analogous t
~3.3!. The mutual informationI (X;Y) between two stochas
tic variables is
Downloaded 29 Sep 2003 to 131.243.52.177. Redistribution subject to AI
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I ~X;Y!5h~X!1h~Y!2h~X,Y! ~3.4!

or in terms of the effective sizes of the support sets

S~X,Y!

S~X!S~Y!
5

eh~X,Y!

eh~X!eh~Y! 5eh~X,Y!2h~X!2h~Y!5e2I ~X;Y!. ~3.5!

We define an EMC correlation distance based on informa
entropy as the minimum of Eq.~3.5! regardless of the value
of t,

dxy5min
t

S~Xt ,Y!

S~Xt!S~Y!
5min

t
e2I ~Xt ;Y!. ~3.6!

If the correlation of the speciesX andY is Gaussian, then the
expression~3.6! for the EMC distance usually leads to
result similar to that of the CMC distance, Eq.~2.4!.

The CMC and EMC distances satisfy the first three
quirements of a metric:

~1! dxy>0,

~2! dxy5dyx ,
~3.7!

~3! dxy50 iff x,y,

~4! dxy1d
zy

>dxy

but not the triangular inequality, condition~4!. This situation
can be remedied with the technique of stress minimizatio38

There is frequently little difference in the results of the pr
diction of a reaction pathway whether the stress minimi
tion technique is applied or not.

B. An example

We choose an example of a reaction mechanism to il
trate the calculation of EMC distances and the prediction
a reaction pathway from simulated time series of concen
tions. We compare these results with predictions of the CM
method. The example is chosen to show differences betw
these two approaches, and to indicate the origin of th
differences. The example is the mechanism

A�
k21

kA

X1�
k22

k1

X2�
k23

k2

X3�
k24

k3

X4�
k25

k4

X5�
k26

k5

X6�
k27

k6

X7�
k28

k7

B. ~3.8!

All of the reactions are first order with constant rate coe
cients, except for theA→X1 step, which is enzyme cata
lyzed. The forward rates of reactions inside the chain areki

50.7 for all i. The backward rates for the reactions inside t
chain arek2250.3, k2550.2, andk2 i50.1 otherwise. The
speciesA1B are held at constant concentrations, withA
5B51, and X8 is varied in a prescribed way~i.e., X8 is
chosen to be the input speciesI ! with kB51.0. Finally, the
enzyme-catalyzed step has the effective rate coefficienkA

560.0X8 /(40.01X8)(60.01X8).
The difficulties in this example arise from the se

inhibition of the enzyme catalysis byX8 . The rate coefficient
kA first increases with increasing concentrationX8 and then
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 5. The diamonds plot the value
of X1 vs X8 obtained from the simu-
lated time series. The rectangles a
the result of a partioning algorithm
see the text. From Ref. 32.
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decreases. The hypersurface formed by eliminating the t
dependence from the set of equations~2.1!, by dividing the
equation for each but one of the species by the equation
that one species, is folded over due to the quadratic de
dence ofkA on X8 .

In the simulation the concentration ofX8 is varied ran-
domly and the responses of the other species are calcu
to give time series of 2000 data points; these series are
starting point for both the EMC and the CMC analysis. T
diamonds in Fig. 5 show the values ofX8 vs X1 obtained
from these time series. The folding of the hypersurface in
concentration space is shown in this projection onto
X1–X8 plane. The space in this plane is divided into re
angles of varying size so that the distribution of points
uniform in each rectangle to within a given accuracy.39 The
density in each rectangle (i , j ) where i and j are indices of
the discretization of the continuous ranges of values ofX1

andX8, is the pair probability distribution

pi j ~x,y!5
Ni j

NtotAi j
,

whereNi j is the number of points in the particular rectang
labeled$ i , j %,Ntot is the total number of points andAi j is the

FIG. 6. EMC construction of the reaction mechanism of the example. F
Ref. 32.
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area of the rectangle. We use the pair distributionp(X1 ,X8)
to calculate the singlet distributionsp(X1) and p(X8) by
integrations. Then, with Eq.~3.3!, and its analog forh(X,Y),
we calculate EMC distances, see Eq.~3.6!, for pairs of spe-
cies. The primary connections among the species are
obtained and their corresponding distances, as derived fro
multidimensional scaling analysis, are shown in Fig. 6.

The calculations of the CMC distances by means of E
~2.4!, and subsequent multidimensional scaling analy
yields a 2D projection, see Fig. 7, that differs from the EM
analysis in two respects. The reaction pathway predicted
EMC correctly shows the close correlation of the enzyma
catalystX8 and speciesX1. It also shows correctly the chai
of linear reactions fromX1 to X7. The CMC method also
shows thatX8 is correlated withX1 , but more weakly. Less
importantly, the CMC method yields a wrap around in t
placing of species 7. However, the three-dimensional rep
sentation of the multidimensional CMC object implement
by stressing the original CMC distances into three rather t
two dimensional results in the correct sequencing of the s
cies: the species points lie on a 3D spiral, which when p
jected onto two dimensional results in the wrap around
fect.

mFIG. 7. CMC construction of the reaction mechanism given in Eq.~3.8!.
From Ref. 32.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 8. Contour plot of the pair distribution function
p(X1 ,X8); the values of the concentrations ofX1 vs X8,
as obtained from the simulations, are also shown. Fr
Ref. 33.
b
b
o

rim
r
e
tio
on
t
a
C

e

to
ear
the

the
is

re-
are

on
this
unts
The differences in the CMC and EMC predictions can
traced to the different pair probability densities estimated
these methods from the given time series. In Fig. 8, we sh
a contour plot of the pair distribution functionp(X1 ,X8) as
calculated by a semi-non-parametric~SNP! method40 with
the time series simulations for these two species supe
posed. In comparison, we show in Fig. 9 a Gaussian pai
probability distribution, as is consistent with CMC, with th
same means and variances as those of the EMC distribu
The deviations of the EMC from the Gaussian distributi
show that higher than second moments contribute. Since
information entropy for any distribution is less than or equ
to that of a Gaussian distribution, we see that the CM
method gives upper bounds to correlation distances betw
species.
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The CMC method gives a reasonable approximation
the reaction pathways of many systems, including nonlin
systems; strong nonlinearities may demand the use of
EMC method, which requires more data points than
CMC method; we do not know how widespread the need
for the EMC method.

IV. ENTROPY REDUCTION METHOD

EMC provides a more accurate representation of the
lationship between two variables because nonlinearities
better described if higher moments of the pair distributi
are considered. There is, of course, a price to be paid for
higher accuracy and that is the requirement for large amo
i-
f

FIG. 9. Gaussian joint normal distribution of the var
ablesX1 and X8 with the means and covariances o
those of the distribution in Fig. 8. From Ref. 32.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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of data. However, even with well-estimated pair distributi
functions one can, theoretically, make better, less ambigu
predictions of network structure from these measureme
One possible extension of the EMC method is something
call the entropy reduction method. Here, we essentially
quire that the nonlinear variation in a variableY be explain-
able by the variations in the concentration of a subset~pos-
sibly all! of the other variables in the system. In terms
entropy this condition is obtained by minimizing the diffe
ential entropyh(YuX) over the set of variableX. The term
h(YuX) is simply h(X,Y) –h(X) where h(X,Y)
52Integral@p(X,Y)log(p(X,Y)/p(X))dX dY. If Y is com-
pletely independent ofX thenh(YuX)5h(Y) otherwise it is
less thanh(Y). Formally, h(YuX) goes to negative infinity
when X completely determinesY. This latter statement is
equivalent to saying the size of the support s
EXP(h(YuX)), is zero. Thus, by iterating through cycles
adding a variablexi to X that minimizes EXP(h(YuX)) until
further additions do not decrease the support set, we can
an ordered set of variables that control the variation inY.
This technology uses the full joint probability distribution
betweenY and the setX and so yet again requires a larg
amount of data to estimate them.~For multivariate Gaussian
distributions, for example, the amount of data needed g
up exponentially with the number of variables.41! The quality
of data and the measurement error, as in the other meth
also plays a role in determining the effectiveness of t
method. However, it may be shown that this method elim
nates a great deal of the ambiguity that arises when only
second moment or a few moments of the distribution
used to define the ordering and causality among the chem
concentration variables. For an expanded discussion of
method see Ref. 32.

Recently, driven by advances in molecular profilin
techniques such as DNA microarrays, other techniques h
been proposed for deduction of interaction networks fr
molecular concentration time series and/or perturbation d
These include variants of linear regression modeling~with
something like SEPATH!42 and Boolean network revers
engineering.43 There are also neural network like procedur
that have been tried for the discussion developmental g
expression network inDrosophila. In addition, there has
been much discussion about application of Bayesian N
work Analysis to the problem. This is related to some of t
information theoretical techniques described above but u
a slightly different set of distributional manipulations. F
nally, there has been some progress on particular experim
tal designs optimized for deduction of causal networks.44,45

ACKNOWLEDGMENTS

This work was supported in part by the Defense A
vances Research Project Agency and the Department of
ergy ~Adam Arkin!, and the National Science Foundatio
~John Ross!.
Downloaded 29 Sep 2003 to 131.243.52.177. Redistribution subject to AI
us
ts.
e
-

f

t,

nd

es

ds,
s
-
e

e
al
is

ve

ta.

s
ne

t-
e
es

n-

-
n-

1T. J. Simpson, Top. Curr. Chem.195, 1 ~1998!.
2M. Eiswirth, A. Freund, and J. Ross, Adv. Chem. Phys.80, 127 ~1991!.
3P. Strasser, J. Stemwedel, and J. Ross, J. Phys. Chem.97, 2851~1993!.
4T. Chevalier, I. Schreiber, and J. Ross, J. Phys. Chem.97, 6776~1993!.
5J. Stemwedel, I. Schreiber, and J. Ross, Adv. Chem. Phys.89, 327~1995!.
6Y. Hung and J. Ross, J. Phys. Chem.99, 1974~1995!.
7Y. Hung, I. Schreiber, and J. Ross, J. Phys. Chem.99, 1980~1995!.
8J. Stemwedel and J. Ross, J. Phys. Chem.99, 1988~1995!.
9Y. Hung, I. Schreiber, and J. Ross, J. Phys. Chem.100, 8556~1996!.

10J. J. Tyson, J. Chem. Phys.62, 1010~1975!.
11E. Mihaliuk, H. Sko”dt, F. Hynne, P. G. So”rensen, and K. Showalter, J

Phys. Chem.103, 8246~1999!.
12F. Hynne, P. G. So”rensen, and T. Mo” ller, J. Chem. Phys.98, 211 ~1993!.
13P. G. So”rensen and F. Hynne, J. Phys. Chem.93, 5467~1989!.
14F. Hynne, P. G. So”rensen, and K. Nielsen, J. Chem. Phys.92, 1747

~1990!.
15A. Gilman and J. Ross, Biophys. J.69, 1321~1995!.
16A. Arkin and J. Ross, J. Phys. Chem.99, 970 ~1995!.
17A. Arkin, P. Shen, and J. Ross, Science277, 1275~1997!.
18A. Hjelmfelt, E. Weinberger, and J. Ross, Proc. Natl. Acad. Sci. U.S

88, 10983~1991!.
19A. Hjelmfelt, E. Weinberger, and J. Ross, Proc. Natl. Acad. Sci. U.S

89, 383 ~1992!.
20A. Hjelmfelt and J. Ross, J. Chem. Phys.96, 7019~1992!.
21A. Hjelmfelt, F. Schneider, and J. Ross, Science260, 335 ~1993!.
22A. Hjelmfelt and J. Ross, Proc. Natl. Acad. Sci. U.S.A.91, 63 ~1994!.
23A. Hjelmfelt and J. Ross, Physica D84, 180 ~1995!.
24J. Laplante, M. Pemberton, A. Hjelmfelt, and J. Ross, J. Phys. Chem99,

10063~1995!.
25A. Arkin and J. Ross, Biophys. J.67, 560 ~1994!.
26D. Hauri, P. Shen, A. Arkin, and J. Ross, J. Phys. Chem.101, 3872

~1997!.
27G. J. Klir, Int. J. Gen. Syst.7, 1 ~1981!.
28R. C. Conant, Int. J. Gen. Syst.14, 125 ~1988!.
29F. H. C. Marriott,The Interpretation of Multiple Observations~Academic,

New York, 1974!.
30K. V. Mardia, J. T. Kent, and J. M. Bibby,Multivariate Analysis

~Academic, San Francisco, 1979!.
31W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlin

Numeical Recipes in C~Cambridge University Press, New York
1988!.

32M. Samoilov, Ph.D. thesis, Stanford University, 1997.
33G. S. Michaels, D. B. Carr, M. Askenazi, X. Wen, S. Fuhrman, and

Somogyi, Pacific Symposium on Biocomputing3, 42 ~1998!.
34S. Liang, S. Fuhrman, and R. Somogyi, Pacific Symposium on Bioco

puting 3, 18 ~1998!.
35S. Fuhrman, M. J. Cunningham, X. Wen, G. Zweiger, J. J. Seilhamer,

R. Somogyi, BioSystems55, 5 ~2000!.
36A. J. Butte and I. S. Kohane, Pacific Symposium on Biocomputing5, 401

~2000!.
37T. Cover and J. Thomas,Elements of Information Theory~Wiley,

New York, 1991!.
38R. N. Shephard, Science210, 390 ~1980!.
39A. M. Fraser and H. L. Swinney, Phys. Rev. A33, 1134~1985!.
40A. Gallant and G. Tauchen,New Directions in Time Series Analysis

Part II ~Springer-Verlag, New York, 1992!, p. 71; SNP: A Program
for Nonparametric Time Series Analysis, Version 8.4. User’s Gui
Chapel Hill, 1995.

41B. W. Silverman,Density Estimation for Statistics and Data Analysi
Monographs on Statistics and Applied Probability 26~Chapman and Hall,
New York, 1986!, p. 94.

42P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, Pacific Sym
sium on Biocomputing4, 41 ~1999!.

43S. Liang, S. Fuhrman, and R. Somogyi, Pacific Symposium on Bioco
puting 3, 18 ~1998!.

44T. Akutsu, S. Miyano, and S. Kuhara, Pacific Symposium on Biocomp
ing 4, 17 ~1999!.

45S. Akutsu, T. Kuhara, O. Maruyama, and S. Minyano, Proceedings
the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
ACM-SIAM, 1998.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp


